Accelerated Telomere Shortening in Acromegaly; IGF-I Induces Telomere Shortening and Cellular Senescence
نویسندگان
چکیده
OBJECTIVE Patients with acromegaly exhibit reduced life expectancy and increased prevalence of age-related diseases, such as diabetes, hypertension, and cardiovascular disease. However, the underlying mechanism has not been fully elucidated. Telomere shortening is reportedly associated with reduced life expectancy and increased prevalence of these age-related diseases. METHODS We measured telomere length in patients with acromegaly using quantitative PCR method. The effect of GH and IGF-I on telomere length and cellular senescence was examined in human skin fibroblasts. RESULTS Patients with acromegaly exhibited shorter telomere length than age-, sex-, smoking-, and diabetes-matched control patients with non-functioning pituitary adenoma (0.62 ± 0.23 vs. 0.75 ± 0.35, respectively, P = 0.047). In addition, telomere length in acromegaly was negatively correlated with the disease duration (R2 = 0.210, P = 0.003). In vitro analysis revealed that not GH but IGF-I induced telomere shortening in human skin fibroblasts. Furthermore, IGF-I-treated cells showed increased senescence-associated β-galactosidase activity and expression of p53 and p21 protein. IGF-I-treated cells reached the Hayflick limit earlier than GH- or vehicle-treated cells, indicating that IGF-I induces cellular senescence. CONCLUSION Shortened telomeres in acromegaly and cellular senescence induced by IGF-I can explain, in part, the underlying mechanisms by which acromegaly exhibits an increased morbidity and mortality in association with the excess secretion of IGF-I.
منابع مشابه
IGF Binding Protein-5 Induces Cell Senescence
Cellular senescence is the complex process of deterioration that drives the aging of an organism, resulting in the progressive loss of organ function and eventually phenotypic aging. Senescent cells undergo irreversible growth arrest, usually by inducing telomere shortening. Alternatively, senescence may also occur prematurely in response to various stress stimuli, such as oxidative stress, DNA...
متن کاملAcrolein-Exposed Normal Human Lung Fibroblasts in Vitro: Cellular Senescence, Enhanced Telomere Erosion, and Degradation of Werner’s Syndrome Protein
BACKGROUND Acrolein is a ubiquitous environmental hazard to human health. Acrolein has been reported to activate the DNA damage response and induce apoptosis. However, little is known about the effects of acrolein on cellular senescence. OBJECTIVES We examined whether acrolein induces cellular senescence in cultured normal human lung fibroblasts (NHLF). METHODS We cultured NHLF in the prese...
متن کاملIs Telomere Length a Biomarker of Adaptive Response? Controversial Findings of NASA and Residents of High Background Radiation Areas
Telomere length and stability is a biomarker of aging, stress, and cancer. Shortening of telomeres and high level of DNA damages are known to be associated with aging. Telomere shortening normally occurs during cell division in most cells and when telomeres reach a critically short length, DNA damage signaling and cellular senescence can be triggered. The induction of an adaptive response by sp...
متن کاملIrreversible cellular senescence induced by prolonged exposure to H2O2 involves DNA-damage-and-repair genes and telomere shortening.
H2O2 has been the most commonly used inducer for stress-induced premature senescence (SIPS), which shares features of replicative senescence. However, there is still uncertainty whether SIPS and replicative senescence differ or utilize different pathways. 'Young' human diploid fibroblasts (HDFs), treated with prolonged low doses of hydrogen peroxide, led to irreversible cellular senescence. Cel...
متن کاملLower antioxidant capacity and elevated p53 and p21 may be a link between gender disparity in renal telomere shortening, albuminuria, and longevity.
It is well documented that females live longer than males and more renal damage occurs in males. However, the underlying mechanisms are not fully understood. The aim of this study was to define aging effects on albuminuria and kidney telomere length from male and female rats and to determine mechanisms, which may explain any observed differences. Cellular senescence is known to play a major rol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015